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LTL cross entropy optimisation for quadcopter task 
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ABSTRACT
This paper presents a task orchestration framework for multi- 
agent systems utilising linear temporal logic (LTL) and cross 
entropy optimisation, a stochastic optimisation technique 
used for rare-event sampling. We define task orchestration 
as a combination of task decomposition, allocation and plan
ning for a quadcopter or team of quadcopters given a high- 
level specification. Specifically, we consider tasks that are 
complex and consist of environment constraints, system con
straints, or both, that must be satisfied. We first approach 
motion planning for the single agent case where transition 
systems for the environment allow tasks to be developed as 
linear temporal logic (LTL) specifications. Trajectories are 
then generated via motion primitives for a single quadcopter 
and optimised via cross entropy to ensure optimal satisfac
tion of a cost function. We extend this work to the multi- 
agent case where a team of homogeneous quadcopters are 
considered to satisfy an LTL specification. In order to provide 
faster computations and initial cost-agnostic sampling, we 
formulate the online version of multi-agent task allocation 
via cross entropy for tasks specified in LTL specifications. The 
results of this framework are verified in simulation and 
experimentally with a team of quadcopters.
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1. Introduction

Interaction with multi-agent systems often involves users requiring the satisfac
tion of a set of complex tasks. These tasks are delegated to the multi-agent 
system for a wide variety of reasons including: autonomous surveillance [1], 
search and rescue tasks [2] and environmental monitoring [3]. Often these tasks 
are defined as individual and environment constraints imposed on the system 
[4,5]. These constraints must then be satisfied by a single-agent or a multi-agent 
system while a main objective is reached according to an objective function or 
performance index. In this paper, we formulate a system called task 
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orchestration, defined as a composition of task decomposition, allocation and 
planning to provide an end-to-end framework for a team of quadcopters given 
constraints and an objective function. Specifically, users provide system con
straints and objectives as linear temporal logic (LTL) specifications [6] and tasks 
are decomposed using a task decomposition framework and allocated accord
ing to an objective function for each agent in the multi-agent system. Finally, 
trajectories associated with a set of assigned tasks are generated for each agent.

We experimentally validate the application of the task orchestration frame
work through a fire-fighting quadcopters scenario. Consider a set of N quad
copters, capable of carrying water, surveying various locations and identifying 
resources within a predefined area. How does one dynamically allocate these 
quadcopters to different regions, extinguish fires and monitor their internal 
states in an efficient manner? Using the task orchestration framework, users 
give a desired global goal for the team of quadcopters to satisfy; the framework 
then dynamically allocates tasks to each agent based on input cost and trajec
tory length, environment and agent constraints and plans trajectories for each 
agent. Experimentally, we define desired regions as hoops in the work space 
and generate an environment transition system to indicate how regions are 
connected. The internal state of a quadcopter is represented as the robot 
transition system. With these formulations, we consider LTL as the global 
specification syntax users provide the task orchestration framework.

Formal logic specifications, like LTL, provide an efficient and concise method 
for specifying and verifying correct behaviour in dynamical systems and are well 
suited to human level interpretation and development due to its expressive 
syntax. High-level motion planning and task allocation using LTL allow for 
a diverse set of problems to be solved. In prior works, product automata 
consisting of environmental and agent systems are composed and satisfying 
sequences of states are found for robotic systems, defined as tasks, that satisfy 
that specification. These tasks are usually formulated as either motion primitives 
consisting of Lyapunov-based controllers [7], potential vector fields [8] or 
through symbolic control approaches like state space partitioning [9]. A work 
that is similar to ours, in the single agent case, is [10] where the authors 
proposed a sampling-based technique utilising modified RRT* for agents to 
satisfy a global linear temporal logic specification. However, this work like 
many others relies on computationally expensive product automatons for 
large environments which are time consuming to generate [11] and dynamical 
constraints for physical systems are not considered. In addition, each transition 
between tasks in these transition systems is often associated with action costs 
that are defined based on expert information about the system dynamics and 
environment.

We address the issue of quadcopter high-level motion planning by creating 
motion primitives based on hoop/direction pairs [12]. These motion primitives 
leverage hand-picked control points around desired hoop locations in the state 
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space and we compose trajectories from them. To avoid discretizing the state 
space and provide optimal trajectories we utilise cross-entropy optimisation 
[13,14]. Cross-entropy optimisation provides a method for stochastic optimisa
tion of trajectories by estimating rare-event probabilities (characterised as 
events that occur infrequently), which we associate with a desired cost and 
cost function. An alternative optimal sampling-based technique proposed in 
[15] leverages a probabilistically complete method of motion planning; how
ever, it is not applied to multiple goal satisfaction nor does it address how it can 
be used for multiple agents. However, many prior works exist that utilise cross- 
entropy optimisation for multi-agent task allocation applications. It has been 
used in solving problems like the max-cut problem [16], vehicle routing problem 
[17] and other problems for which dynamic allocation of resources can be 
formulated as minimising according to a known desired cost and resources 
are drawn from a known distribution in order to estimate an unknown distribu
tion [18,19].

In addition to providing a framework for high-level motion planning in the 
single agent case, we also reduce the time-consuming and resource-intensive 
process of product automaton generation for the multi-agent case. We do this 
in two ways: we leverage an LTL decomposition framework and introduce an 
online method for cross-entropy optimisation on trajectories sampled from 
multivariate distributions. The decomposition framework is from [20 21] and 
provides a theoretically sound method for decomposing a global LTL specifica
tion for an arbitrary number of agents. This bounds the size of the system 
product automaton to grow linearly with the number of agents as opposed to 
exponentially, as in most other works. We expand this work by introducing 
cross-entropy optimisation which allows task delegation and switching to be 
based on the cost function of an individual agent. This not only removes the 
need for an expert dependent action cost assignment but also allows general 
agent cost constraints to be defined within each agent that can leverage cross- 
entropy optimisation for multi-agent task allocation. In addition to this, the 
online multi-agent task allocation framework we propose fast calculations of 
optimal agent assignments and greatly reduces the task allocation computation 
time. One work that is close to ours is that of mutliuav:zhang, where the authors 
use adaptive cross-entropy for task assignment for UAV formations, optimised 
over a global cost function. However, these authors do not consider path 
planning in their problem formulation and only consider task allocation for 
simulated vehicles.

Contributions

In this paper, we develop a framework for task orchestration in the single-agent 
and multi-agent case and present three contributions. In the first contribution, 
we develop a hoop-sequencer algorithm that ensures a quadcopter flies to 
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complete complex tasks where explicit sequences may be difficult to create. 
This is solved through the generation of LTL specifications and optimised via 
cross-entropy optimisation.

The second contribution of this work presents a novel algorithm designed 
to sample trajectories and converge to a desired cost to determine the best 
robot from a team of robots for continued satisfaction of a goal specification 
and objective function. This algorithm advances the state-of-the art by 
introducing a formulation that allows users to design agent-specific cost 
functions – for a homogeneous team of robots with equivalent dynamics – 
and dynamically allocate tasks over time while satisfying a global specifica
tion in addition to constraints of the environment or individual agent 
dynamics.

Our third contribution improves on the multi-agent task allocation algo
rithm by modifying our framework to consider online task allocation, provid
ing fast updates to desired trajectories allocated to a team of robots. To the 
best of the authors’ knowledge, this paper is the first to utilise cross-entropy 
optimisation for both UAV task allocation and planning via the use of multi
variate sampling distributions while leveraging high-level task assignments 
through linear temporal logic and presents experimental results validating the 
use of cross-entropy for UAV task allocation and trajectory planning. This novel 
approach to task allocation provides online trajectory sampling from a known 
distribution and iteratively updates based on the desired quantile of the 
multivariate distribution associated with a desired trajectory. By providing 
this online methodology we combine the reduction in product automata 
size from task decomposition with an expert independent framework for 
choosing optimal costs and a fast way to dynamically allocate tasks to a set 
of agents which scales linearly.

This paper extends the work from [12] and [19] by significantly expanding the 
capabilities of the previously developed multi-agent task allocation algorithm 
via the online cross-entropy optimisation method developed in this paper. In 
particular, we present a novel characterisation of online cross-entropy over 
multivariate distributions and develop a general, task orchestration framework 
that utilises this stochastic optimisation methodology for online task assign
ments to individual agents in a multi-agent system. We compare this online 
result to the prior offline work, and empirically show a significant decrease in 
overall cost and execution time. In addition to this, we validate the online 
approach for task orchestration of multi-agent systems on a particular fire- 
fighting quadcopters scenario.

The paper proceeds as follows. In Section 2 we review preliminaries and 
notation used throughout the paper. In Section 3 we introduce the hoop- 
sequencer planner and optimisation framework for the planner. In Section 4 
and 5 we introduce the MTAC-E algorithm and provide a case study. In Section 6 
we improve on the MTAC-E framework and provide an online version of the 
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stochastic optimisation technique followed by experimental results comparing 
the online and offline versions. We provide experimental results for the online 
MTAC-E framework in Section 7 followed by the conclusion in Section 8.

2. Preliminaries

In this section we introduce the preliminaries that will be used throughout the 
paper.

First, we give a brief introduction of finite LTL, which we use as a method of 
generating high-level specifications for discrete autonomous systems. We opti
mise our frameworks throughout this paper with the stochastic optimisation 
technique, cross-entropy, allowing us to sample from a subset of nominal 
trajectories that satisfy an optimal cost for a system of agents. Following this, 
we show how we utilise quadcopters as a highly manoeuvrable and versatile 
robotic platform to use for task orchestration frameworks and introduce quad
copter dynamics and the controller used throughout this paper.

2.1. Finite LTL for Global Task Specification

In this section, we provide a brief background on finite LTL, a class of LTL 
specifications well-suited for formally representing planning problems [22] 
and interpreting finite sequences [23]. LTL specifications ϕ are defined as logic 
formalisms suited for specifying linear time properties [24,25]. LTL specifications 
are defined over traces and indicate repeated satisfaction of a set of proposi
tions � defined in the following definition. 

Definition 2.1. Let ρ be the finite set of atomic propositions. Each proposition πi 

maps from system state to true πi or false ð?Þ and enables us to define 
a Boolean property of the state space (e.g. ‘Is the robot in area G?’).

In order to create a formulation for decomposing, we consider finite LTL 
specifications. Finite LTL specifications are insensitive to infiniteness [26]. This 
restriction applied to LTL specifications means we can reduce LTL formulas to 
finite LTL formulas by including a unique end proposition into the set of all 
propositions (2π) for the formula. In order for a formula to be insensitive to 
infiniteness the following can be shown: i) inclusion of this end proposition, ii) 
end must hold eventually, iii) end must remain true for all time, and iv) when 
end is true, all other propositions are trivially set to false. Specifications are 
defined over sequences of observations and the notation σ � ϕ indicates that 
the sequence σ satisfies ϕ. Finite LTL includes the co-safe LTL [27] class where 
a sequence σ contains ‘good’ prefixes such that σf ¼ w0;w1; . . . ;wn is 
a satisfying truncated finite sequence and an infinite sequence σω with 
propositions in the set σω 2 2� where every proposition in σω evaluates to 
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true distx
curr;next � distyz

curr;next for the specification. The entire satisfying 
sequence is then a composition of σf and σω where σ ¼ σf σω. Another class 
of finite LTL specifications that is utilised contains a similar prefix-suffix 
structure for sequences except the sequence σ is defined as σ ¼ σf σN where 
σN is a N repeating sequence of propositions that satisfies the LTL specifica
tion for the duration of the algorithm. Any finite LTL specification can be 
represented via a non-deterministic finite automaton (NFA) [20], which we 
define below. 

Definition 2.2. A non-deterministic finite automaton (NFA) is given as the tuple 
F ¼ ðQ;Q0; β; δ; FÞ such that:

● Q is a set of states
● Q0 is a set of initial states
● β is the set of Boolean formulas defined over the proposition set (�)
● δ is a set of transition conditions such that δ : Q� Q! β
● F is a set of accepting final states.

Given finite runs q ¼ qð0Þ . . . qðTÞ 2 Q a sequence σ – defined as a sequence 
of propositions πi from � – satisfies ϕ if it enables a transition from qð0Þ, an 
initial state, to qðTÞ 2 F. These transitions, generated from δðq; q0Þ ¼ fβig, map 
onto a subset of the Boolean formulas, β, which evaluate to true if the proposi
tion, πðtÞ, from σ satisfies it. Moreover, the NFA can be constructed from a finite 
LTL formula ϕ where a finite sequence σ � ϕ if and only if σ successfully 
produces a run q such that qðTÞ 2 F. Throughout this paper, finite LTL will be 
referred to as LTL.

2.2. Cross Entropy

Cross-entropy optimisation is a method of importance sampling for probabil
istically rare events. The algorithm design for using cross-entropy with motion 
planning [13] can be generalised as the following:

(1) Generate a set of sample trajectories (X ) from a distribution pð�; xÞ and 
calculate cost J ð�Þ for each trajectory

(2) Update the distribution, p, using a subset of samples (κ), until the sam
pling distribution converges to a desired cost (λ) and delta function over the 
optimal trajectory

The subset of sampled trajectories with the lowest cost (i.e. κ � J) is defined 
such that jκj ¼ ρjJj, where typically 0:1 � ρ< 0:3. This subset is known as an 
elite set and provides a new sampling space to generate the distribution p. In 
this work, we sample trajectories according to a multivariate Gaussian distribu

tion Nðμ;�Þ such that μ ¼ ½μ0; . . . ; μn�
T for n equally spaced points along the 
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set of sampled trajectory. The covariance matrices, � ¼ ½�0; . . . ;�n�
T form an 

nm matrix with �i initially set to the identity matrix, I . Expectation- 
Maximisation [28] is used to update the means and covariances for the newly 
sampled trajectories.

2.3. Quadcopter Dynamics

We present here the dynamics considered for a quadcopter (shown in Figure 1) 
and how trajectories are generated via spline interpolation to achieve proposi
tion satisfaction.

The rotation matrix, RðPÞ, that translates between the world frame (Fw) and 
body frame (Fb) is given by 

RðPÞ ¼
cθcψ sϕsθcψ � cϕsψ cϕsθcψþ sϕsψ
cθsψ sϕsθsψþ cϕcψ cϕsθsψ � sϕcψ
� sθ sϕcθ cϕcθ

2

4

3

5 (1) 

where sθ and cθ stand for sinðθÞ and cosðθÞ, respectively. The angles θ;ψ; and 
ϕ are the angles between the axes of the quadcopter in the body frame and the 

axes of the world frame. The input (μ) to the system consists of μ ¼ ½fz;ωT
bw�

T 

with fz as the thrust and ωbw ¼ ½ωx;ωy;ωz�
T as the body rotational rates of the 

quadcopter. We use the non-linear quadcopter model from [29] to describe the 
dynamics that generate trajectories for quadcopters: 

r
::
¼ gzw þ

1
m

RðPÞzwfz (2) 

Figure 1. A quadcopter with respect to the world frame (Fw), intermediate frame (Fc) and body 
frame (Fb). Four motors (ω1:4) produce torques and thrust for the system.
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_P ¼ λðPÞωbw ¼

1 sϕtθ cϕtθ
0 cϕ � sϕ
0 sϕscθ cϕscθ

2

4

3

5ωbw; (3) 

where zw = ½0 0 1�T is the z-direction vector for force in Fw and scθ and tθ are 
secðθÞ and tanðθÞ, respectively. The position of the centre of mass (r) in the 

world frame (Fw) is r ¼ ½rx; ry; rz�
T
; m, and g are the mass and acceleration of 

gravity, respectively. We represent the Euler angles as P ¼ ½ϕ; θ;ψ�T , and ΓðPÞ
is the transformation matrix from body rotational rates in Fb to Euler angles in 
Fw . These dynamics give the 9-dimensional state (�) of the quadcopters where 

� ¼ ½rT ; _rT ; θ;ϕ;ψ�T and input (μ).
Utilising the differentially flat dynamics [30] of the quadcopters, we plan 

trajectories in the flat output space and their derivatives. From this property, 
trajectories can be generated by leveraging the nonlinear dynamics of the 
quadcopters. This leads to the ability to plan smooth trajectories that are three- 
times continuously differentiable functions, ηðtÞ 2 C3, in the output space that 
can be converted back analytically into feasible trajectories for the full state of 
the quadcopters.

For a multi-agent system M¼ f1; . . . ;Ng, we control the dynamics of agent i 
through the following chain of integrators: 

_pi ¼

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

2

6
6
4

3

7
7
5

4�4

� I3�3 � pi þ

0
0
0
1

2

6
6
4

3

7
7
5 � u (4) 

with virtual input u 2 R 3 and state p ¼ ½rT ; _rT ; r
::

T ; r
...

T �T 2 R 12 where 

r ¼ ½x; y; z�T . We control this linear system using feedback control with 

u ¼ � hK; p � ηðtÞi (5) 

given a desired K 2 R 1�4, state p ¼ ½r; _r; r
::
; r

...
�

T , and desired trajectory ηðtÞ ¼

½rd; _rd; r
::

d
; r

...

d
�

T and drive the linear system to the desired trajectory and derive 

the feedforward control inputs μff ¼ ½fz;ff ;ωT
bw;ff �

T from differential flatness 

and generate feedback control inputs μfb ¼ ½fz;fb;ωT
bw;fb�

T from a PID control 

loop [12] to control an individual quadcopter with control 
input μ ¼ μff þ μfb.

3. Specification Based Planning of a Quadcopter

Given a quadcopter with dynamics described in Section 2.3, in prior work, we 
developed a fully autonomous planner capable of navigating through sus
pended hoops [12]. Using this planner we define a hoop in R 3, with the 
following definition: 
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Definition 3.1. We define a hoop set H=fH0;H1; . . . ;Hng according to: 

EjðrÞ ¼
ðrx � xjÞ

2

a2 þ
ðry � yjÞ

2

b2 þ
ðrz � zjÞ

2

c2 (6) 

Hi ¼ fr 2 R 3 j EjðrÞ � 1g (7) 

where ðrx; ry; rzÞ is the pose of the quadcopter, ðxj; yj; zjÞ is the position of 
a region of interest (Ej) with index j and a; b; and c are the x-radius, y-radius and 
z-radius of the regions, respectively. We define these three constant radii (a; b; c) 
2 R > 0 for the regions to represent the volume covered by each ellipsoid in our 

experiments and note they are equivalent for all ellipsoids.

Additionally, each hoop contains five control points (two avoid points, front, 
rear, and centre) in R 3, as illustrated in Figure 2. We leverage these control 
points as anchor points defining locations of interest near hoops and use them 
to develop motion primitives between hoops. These motion primitives are 
predefined trajectories and are chosen based on a quadcopters position and 
direction according to the desired sequence of hoops. A motion plan, formu
lated as an LTL specification, is provided to the hoop-sequencer planner.

3.1. Finding Satisfying Sequences Given an LTL Specification

We consider the scenario of users providing high-level system requirements in 
the form of LTL specifications through the following problem formulation. 

Problem 3.1. Given a quadcopter and a set of hoops labelled by propositions, 
design a trajectory that satisfies a given LTL specification. For example, consider 
the following specification: ‘always ensure flying through hoop0 implies hoop2 is 
flown through before hoop1 and eventually reach hoop1’. This specification can 
be represented by the LTL formula ϕ ¼ ð}hoop0 ! :hoop1 [

h oop2 ^ }hoop1Þ.

In this section, we define transitions between LTL propositions and contin
uous space and develop a hoop-sequencer planner to accommodate LTL 
specifications.

Hoops (hoopi) are defined as atomic propositions according to Definition 2.1 
such that the proposition set is � ¼ fhoop0; hoop1; . . . ; hoopng. We check that 
propositions hoopi are satisfied by mapping the hoop set (Hi) in Definition 7, to the 
propositions through the labelling function k, where kðrÞ ¼ fhoopi 2 � : r 2 Hig. 
In other words, we map the position of a quadcopter (r 2 R 3) to a set of corre
sponding hoop propositions. For example, kðrÞ ¼ fhoop0g iff r belongs to H0. For 
continuous quadcopter trajectories ηcðtÞ, we use a slight overload of notation for 
the following definition. 

CYBER-PHYSICAL SYSTEMS 9



Definition 3.2. Let us define the labelling function k over a continuous trajectory 
where kðηcÞ ¼ fhoopi1 ; hoopi2 ; hoopi3 ; . . . ; hoopijg is the sequence of hoops vis

ited by a quadcopter and hoopi 2 � and j indicates the jth hoop in the sequence.

This labelling function generates a sequence of propositions from the con
tinuous trajectory ηcðtÞ for t � 0. For example, a sequence could have the form 
kðηcÞ ¼ fhoop0; hoop1; hoop0g. If the continuous trajectory ηcðtÞ is created such 

Figure 2. The orientation of the control points around an example hoop. We define five control 
points as points in R 3 at desired positions around hoops which are used as anchor points for 
trajectories generated between them.
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that all propositions (hoopi) generated from the trajectory satisfy an LTL formula 
ζ, then we have successfully found a trajectory that satisfies a given LTL formula. 
Therefore, the trajectory ηc satisfies the LTL formula ζ iff kðηcÞ � ζ.

After defining discrete propositions in continuous space, we can plan trajec
tories in the discrete space and map the trajectories back into the continuous 
domain using our hoop-sequencer planner. From the LTL specifications, we 
generate a NFA as a directed graph. A search through this graph for a run q ¼
q0q1 . . . qN results in a satisfying run if qN 2 F, or qN is in the set of accepting final 
states of the NFA. Associated with run q is a sequence of propositions (π 2 �) 
such that a word σ ¼ π0; π1; . . . 2 � is accepted if there is an accepting run for σ. 
Once a satisfying run has been found, the satisfying word (i.e. a sequence of 
hoops) has been found and we apply our hoop-sequencer planner to find 
a continuous trajectory.

3.2. LTL Hoop-Sequencer Planner

Solution 3.1. In this section, we describe our hoop-sequencer trajectory planner 
in Algorithm 1. The algorithm receives as input the current pose of the robot (r), 
a set of n hoops (H) (each defined by the control points previously mentioned), 
the input LTL specification (ϕ), and the previous control points visited by the 
quadcopter (c1:m). These control points are used to generate four distinct curves 
based on the distance of the current pose and future control points along with 
the direction of the quadcopter and generates segments (segment) via spline 
interpolation that joins control points together.

We first define the current (pos curr) and previous (pos prev) pose which are 
found based on the order of the input sequence. In line 3, the past direction 
(dirpast) of the last control point transition is recovered from the list of previous 
control points. We introduce a function LTL_TO_SEQUENCE in line 4 which 
receives an LTL specification, generates an equivalent NFA and searches for 
a satisfying sequence. In order to determine which direction (front or rear) the 
quadcopter must fly through the hoop, we use the Euclidean distance between 
each proposed hoop to find the closest control point between two consecutive 
hoops in the sequence. The corresponding directions are appended to the 
hoops in the sequence and the planner executes as before. From the LTL 
specification ϕ ¼ ð}hoop0 ! :hoop1 [

h oop2 ^ }hoop1Þ, we get the sequence: 

�prop ¼ G ¼ ðhoop1Þðhoop2Þ
N in prefix-suffix form. We note that �prop is used to 

denote the accepting word for the NFA generated from our sample LTL speci
fication and N indicates the hoop, or set of hoops, that can be visited N times 
during the execution of the algorithm. The resulting trajectory is shown in 
Figure 4.
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In lines 6–8 we define the next control point (pos next) and the distance 
vector (distcurr;next) to the next control point. In line 6, the function 
NEXT_CONTROL_POINT uses the current sequence to determine which control 
point on a labelled hoop is next. The function DIRECTION in Line 8 gets the 
direction that the quadcopter is heading. This will inform our algorithm which 
type of trajectory, out of four pre-determined curves, will be chosen for 
a particular path segment. Starting at Line 9, hoops that are in the state space 

Figure 3. Trajectory segments that are generated in the hoop-sequencer planner.

Figure 4. A satisfying run from the LTL specification ϕ ¼ ð}hoop0 ! :hoop1 [
h oop2 ^ }fhoop1Þ. 

We show the prefix portion of the trajectory in black and the suffix portion in red. The suffix portion 
indicates the set of hoops that can be visited infinitely often.
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but not in the input sequence (G) are avoided using the AVOID function. The 
AVOID function receives as input the current position, a hoop from the list of 
hoops and the desired next position. If a hoop is between these two points, the 
function will choose the closest avoid control point of a particular hoop without 
crossing through that hoop and that resulting segment from the avoid control 
point to the current position will be added to the total trajectory ηðtÞ.

Algorithm 1: Hoop-Sequencer Planner

Characterising a Trajectory Segment: For the four types of trajectories that 
can be generated, all are parameterised by time and are described by our 
algorithm in lines 15–25. We describe each function in detail here.

STRAIGHT: If distyz ¼ 0, The function STRAIGHT in line 15 generates 
a trajectory segment length jjηsðtÞjj ¼ jrc

x � rw
x j where rc

x is the x � component 
of the current pose and rw

x indicates the x � component of the previous pose.
U_TURN: A trajectory the length of two quarter arcs joined by a straight 

segment is returned by the U_TURN function in Line 19 
where jjηsðtÞjj ¼ ðdistyz � distxÞ þ ðdistx �

π
2Þ.
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S_CURVE: In line 21, the length of the trajectory segment is created by first 
defining a right triangle leg (rt), such that rt ¼ δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dist2

x � dist2
yz

q
. Then, θ and the 

hypotenuse (h) of the triangle are defined as θ ¼ atan2ðdistyz; distxÞ and 
h ¼ rt

sin θ , respectively. The total length of the trajectory results in jjnsðtÞjj ¼
2ð2hθÞwhich generates two equal length tangent arcs or an ‘s-curve’ in function 
S_CURVE.

TURN: If the direction is not the same as last, the trajectory length becomes 
a straight segment followed by a half-circle that changes the direction of the 
quadcopter such that jjηsðtÞjj ¼ distx þ ðdisty �

π
2Þ, the function TURN generates 

this segment.
In Figure 3 we show each type of trajectory segment that our planner can 

generate. The path lengths are then transformed into time segments via 

ts ¼
jjηsðtÞjj

v , where v is the desired speed. These time segments (ts) along with 
the waypoints (w1:m) given by the input sequence are used to generate smooth 
trajectories (ηðtÞ) via spline interpolation.

3.3. Optimising Sequences Using Cross-Entropy

Although the hoop-sequencer planner is able to generate trajectories from 
user provided LTL specifications, the path is generally not optimal. This is 
due to the fact that the motion primitives used to generate trajectories are 
only constrained to satisfy continuity requirements. By constraining our 
trajectories with a cost function, we can generate trajectories that not only 
satisfy the primary objective of the user but secondary objectives of the 
system (e.g. minimise fuel cost, average velocity, etc.). We draw from the 
following scenario to motivate our problem: 

Problem 3.2. Given a hoop-sequencer planner for quadcopters, utilise the cross- 
entropy method to return trajectories that satisfy the sequence as well as mini
mise cost. Use this method to guarantee an optimal trajectory with respect to 
a cost function J ðr; uÞ, parameterised by the robot pose, r, and its control input u.

Solution 3.2. We use the cross-entropy method as a stochastic optimisation 
technique for choosing trajectories according to our cost function, which we 
define to minimise the total length of the trajectory, i.e. J ðr; uÞ ¼ jjηð�Þjj.

Optimising the Hoop-Sequencer Planner: From the augmented hoop- 
sequencer planner, we apply cross-entropy optimisation to reduce the cost of 
the sampled trajectories once they are generated. Our algorithm is adapted 
from [18] with modifications on sampling initial means. We sample from the 
hoop-sequencer planner to generate initial means to ensure that only the 
subset of the state space relevant to our hoop sequence is sampled.
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Path samples are sampled from a multivariate Gaussian distribution. The 
means (μ0) are initialised to be n equidistant samples from the augmented 
hoop-sequencer planner. As a result, we get path samples from line 7. Line 8 
defines a PATH function that receives as input samples from the distribution 
pðμ0; vÞ and generates a trajectory via spline interpolation. This trajectory is 
then checked in line 9 where it is monitored for inclusion in the hoop set (H). 
The trajectory is then parsed in the syntax of the accepting set of hoops and 
checked for whether it satisfies the string received initially from the augmen
ted planner generated from the LTL formula (ϕ). If this check returns True the 
trajectory is returned, otherwise a new trajectory is sampled. Trajectories are 
collected and sorted from best cost to worst cost and an elite set is chosen 
corresponding to a subset of trajectories ðTÞ. We then update the probability 
distribution using the elite subset of trajectories. 

Example 1. Using the cross-entropy hoop-sequencer planner, we optimise over 
the LTL formula ϕ ¼ ð}hoop0 ! :hoop1 [

h oop2 ^ }hoop1Þ provided in 
Section 3.1. In Figure 6, we show the optimised trajectory of the LTL formula 
with the constraint that each trajectory segment (prefix and suffix) length 
should be less than 5 metres or J ðr; uÞ � 5. In Figure 5 we show the sampled 
paths over an iteration of the algorithm.

4. Multi-Agent Task Allocation via Cross Entropy

In the previous section, we presented a planner capable of utilising LTL to 
delegate high-level user specifications to a quadcopter. Through the intro
duction of motion primitives we simplify the path planning problem and 
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Figure 5. Here we show a series of trajectories generated from Algorithm 1. The prefix portion 
of the trajectory, represented in blue, satisfied the cost function J ¼ jjηðtÞjj initially therefore, 
only one sample was needed. Several samples of the suffix portion, in red, of the trajectory were 
sampled before a satisfying trajectory was found.

Figure 6. A simulation snapshot of the LTL cross-entropy hoop-sequencer planner after 
a satisfying run. The optimised trajectory of is shown here where each trajectory segment 
must satisfy the cost constraint J ðr; uÞ � 5.
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introduce cross-entropy to optimise trajectory costs over a desired cost 
function. However, for large LTL specifications using a single agent may 
become infeasible. By using multiple agents, we can scale up the number of 
tasks a group of robots can perform and reduce the total time required to 
complete the tasks. Therefore, in this section we propose to use LTL as 
global task specifications, allowing users to design global goals for multi- 
agent team execution. In addition to this, global goals enable scalability (i.e. 
goals are independent of the team size) and reduce cognitive load [31] on 
the designer as they do not have to assign each agent a specification. This 
type of interaction modality is easily adapted from temporal logic formula, 
in addition to providing formal guarantees for global specification satisfac
tion. In this section, we will give a brief overview of the transition systems 
used followed by an LTL decomposition framework that will allow for the 
decomposition of LTL specifications to a set of N agents.

4.1. Defining Transition Systems

We adopt the framework for defining task decomposition from [20], which 
involves creating several state transition systems for a robotic system. From 
this discrete planning framework, we are able to decompose a product auto
maton containing multiple agents into independent tasks that can be handled 
by each agent, while also satisfying a given goal specification. The definition of 
the robot transition system, R, follows. 

Definition 4.1. The robot transition system is defined as a tuple R ¼
ðSR; SR;0;AR;�R;ΛRÞ such that:

● SR is a set of robot states
● SR;0 � SR is the set of initial robot states
● AR is a set of available robot actions
● �R is the set of robot propositions
● ΛR : SR ! 2�R is a labelling function that assigns atomic propositions to 

states.

The robot transition system captures the entire internal state of a robot 
and transitions are based on the actions, AR, available to the robot at each 
state. For example, consider a simple robot transition system with two 
states S ¼ fcharging; not chargingg. We can define a sequence of state 
action pairs s ¼ s0; a0; s1 to transition from the non-charging state (s0) to 
the charging state (s1) via action a0, and vice versa. We next define the 
environment transition system E to capture the properties of the regions of 
interest for the agents.
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Definition 4.2. The environment transition system is defined as a tuple E ¼
ðVE ; EE ;�E ;ΛEÞ such that:

● VE is a set of environment vertices
● EE is a set of edges between vertices where EE � VE � VE
● �E is the set of environment propositions
● ΛE : VE ! 2�E is a labelling function that assigns atomic propositions to 

locations.

The product transition system A is used to define the internal state and 
external location of the agent throughout the planning space.

Definition 4.3. The agent transition system is given as a product transition 
system A ¼ E �R ¼ ðSA; SA;0;AA;�A;ΛAÞ such that:

● SA ¼ VE � SR is the set of combined location and internal states of the 
agent

● SA;0 ¼ fðv; s0Þ 2 SA : s0 2 SR;0g is the set of initial agent states
● AA � SA � SA is the set of actions available to the agent
● �A � �E ��R is the set of agent propositions
● ΛA : SA ! 2�A is a labelling function that assigns atomic propositions to 

agent states.

In this definition, the set of actions AA are available to a robot based on 
both its internal state and location in the environment. Additionally, the 
actions are restricted in that only actions that are available at states which 
satisfy some Boolean transition formula, � : AA ! ψ, are included. More 
formally, 

AA :¼ fa ¼ ððv; sÞ; ðv0; s0ÞÞ 2 SA � SA :

ðv; v0Þ 2 EE ^ ðs; s0Þ 2 AR ^ ΛAððv; sÞÞ � �ðaÞg

Now that we have the agent automata defined for all agents, we can define 
the planning automaton P for the entire system.

Definition 4.4. The planning automaton P is a product automaton of an NFA F , 
generated from LTL specification ϕ, and agent transition system A where P ¼
F �A ¼ ðSP; S0;P ;APÞ such that:

● SP ¼ Q� SA is the set of states
● S0;P ¼ fðq0; sÞ 2 SP : q0 2 Q0 ^ s 2 SA;0g is the set of initial states
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● AP ¼ fððq; sÞ; ðq0; s0ÞÞ 2 SP � SP : ðs; s0Þ 2 AA ^ βðsÞ � δðq; q0Þg is the set of 
actions.

With the planning automaton P, only sequences, σ – with propositions �A – 
that satisfy the LTL specification ϕ are accepted.

4.2. Decomposition Set

Given a multi-agent system with N agents, according to the set of automata 
P i;...;N, we seek to decompose the global LTL specification ϕ such that parts of it 
can be assigned to the set of agents based on their cost functions. Moreover, 
using task decomposition, we wish to generate independent sequences of 
action/state pairs from P i to satisfy ϕ where sequences are si ¼ s0a0; . . . ; ansn. 
We give the following definition of finite LTL task decomposition. 

Definition 4.5 [20]. Let T i with i 2 f1; . . . ; ng be a set of finite LTL task speci
fications and σi denote any sequence such that σi � T i. These tasks are called 
a decomposition of the finite LTL mission specification ϕ if and only if: 

σj1 . . . σji . . . σjn � ϕ (8) 

for all permutations of ji 2 f1; . . . ; ng and all respective sequences σi.

From this definition of decomposition we can create the decomposition 
set D � Q of the NFA F developed from ϕ. This set contains all states q for 
which the pair of tasks T q

1; T
q
2, where q is a state in the decomposition set 

D, define a valid decomposition. For a proof of this property, we refer the 
reader to [20].

We use this decomposition property to avoid generating a large product 
automaton of the transition system of agents and automaton representa
tion of the finite LTL specification. This greatly reduces the computational 
complexity usually encountered with systems involving a large number of 
agents. We define team product automata, T , with the following definition. 

Definition 4.6. The team model automaton T is a union of the N local planning 
automata P i with i 2 f1; . . . ;Ng where the tuple is T ¼ ðST ; S0;T ;AT ; FT Þ such 
that:

● ST ¼ fðr; q; sÞ : r 2 f1; . . . ;Ng; ðq; sÞ 2 Si
Pg is the set of states

● S0;T ¼ fðr; q; sÞ 2 ST : r ¼ 1g is the set of initial states, with r being 
a randomly assigned initial agent

● AT ¼
S

i Ai
P [ ζ is the set of actions, including the switch transitions Z

● FT is the set of accepting final states
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Switch transitions, Z, allow our algorithm to select a new agent within the 
product automaton to complete the satisfaction of the specification. 

Definition 4.7. The switch transitions in T are given by Z � ST � ST . 
A transition ζ ¼ ððrs; qs; ssÞ; ðrt; qt; stÞÞ 2 Z if and only if [20]:

● rs�rt : the agents are different
● qs ¼ qt : the progress of the NFA is preserved
● rt ¼ rs þ 1: A new agent is selected
● st ¼ srt

0;A: The new state is the initial state of a new agent
● qs 2 D: the state is in the decomposition set of the NFA.

With discrete transition systems defined for a homogeneous team of 
agents, a decomposition framework, and a method to generate trajectories 
for a single agent we turn to the following problem formulation. 

Problem 4.1. For a given set of homogeneous agents, distribute tasks 
among these agents considering discrete agent transition systems with 
unknown action costs. Distribute these tasks while minimising individual 
agent cost functions fið�Þ, given by the operator before execution, for agents 
i; . . . ;N.

We demonstrate this problem as a fire-fighting quadcopter scenario in 
Section 5.3. In this problem, we designate N quadcopters, each defined by discrete 
product automata as our set of homogeneous agents, with no action costs to 
transition between states. The team of robots is given the global task of surveying 
goal locations within the state space, acquiring water and transporting it to the 
desired location while obeying the constraints of the environment. We solve this 
problem using the MTAC-E algorithm proposed below.

5. MTAC-E Algorithm

Solution 5.1. We propose the Multi-Agent Task Allocation Cross-Entropy 
(MTAC-E) Algorithm to delegate tasks to a set of agents. Previously, we 
defined a decomposition framework in Section 4.2; given we have designed 
cost functions for each agent in the problem, we need a way to find optimal 
trajectories by minimising nominal trajectories via these cost functions. To 
find the associated minimised costs, we propose using cross-entropy optimi
sation. In this framework, we use agent trajectory costs optimised via cross- 
entropy as opposed to static actions costs defined at discrete state 
transitions.
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This additional flexibility in problem design allows operators to minimise over 
individual agent cost functions and use generalised functions for entire agent 
trajectories when the cost to perform an action is unknown. Next, we present 
the multi-agent task allocation cross-entropy (MTAC-E) algorithm followed by 
a complexity analysis of the algorithm and the case study mentioned in the 
problem statement.

5.1. Algorithm

The algorithm developed in this paper, provided in pseudocode format in 
Algorithm 2, can be described in four steps: (1) given the initial state of the agent 
product automaton, find the cost of transitioning to the next state using cross- 
entropy and the cost function assigned to the agent, (2) if this state is contained in 
the decomposition set, check all other agent cost functions and, (3) if an agent has 
a lower total cost, switch to this agent for the remainder of the algorithm or until 
a new switch is determined, (4) this process is continued until the end state is found 
and corresponding trajectories are returned to all agents for execution.

The algorithm receives as input the team product automaton, T , the decom
position set, D, an optimal cost for each agent to minimise towards, λ, the elite set 
modifier, ρ, an initial sampling distribution, p and the number of times to iterate the 
sampling procedure, K . In Line 1, the initial state, pi, the agent of pi, αi, and the 
current sequence of states visited by agent i, sequencesi, are initialised. We recall 
Definition 4.6 of the team product automaton in this framework such that via 
a standard breadth-first search, once the state p 2 final statesðT Þ is found and 
a sequence is generated that reaches this state, the LTL specification is satisfied.

The cross-entropy optimisation technique in Line 7 is utilised in the function 
cost_to_go. An initial probability distribution is provided for each agent with 
initial means and variances. Also, elite set modifiers (ρ), an optimal cost (λ), and 
a bounding maximum iteration number ðKÞ are supplied as input. The function 
samples from the given distribution and iterates until either the cost function 
has been met or the maximum iterations has been exceeded and returns the 
trajectories for each agent (ηiðtÞ; . . . ; ηnðtÞ).

For states in the decomposition set (D), a cost is calculated from each in Line 
9 and if one of the costs is less than the current agent’s cost (costi) the agents are 
swapped and the new agent j continues the remainder of the sequence until the 
next switch transition occurs. By switching the agents at decomposition states, 
this algorithm optimises the individual task function of each agent via cross- 
entropy and optimally allocates tasks to minimise the total cost of an individual 
agent. This algorithm will return a set of trajectories N with each agents 
individual trajectory ηiðtÞ.
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Algorithm 2: MTAC-E Algorithm

5.2. Complexity

We give a brief overview of the complexity of the algorithm and compare it to other 
methods for task allocation using temporal logic. Size analysis to search through LTL 
automata for satisfying sequences is well-known baiermodelchecking. Generally, 
a trajectory, η can be checked if it satisfies the automata Aϕ in Oðjηj � jAϕjÞ, 
denoting a bilinear complexity in the length of the trajectory and in the size of the 
automata. Leveraging task decomposition, the size of our team automaton, T is 
smaller than one created via a product automata (i.e. 
Aprod ¼ Pi �P iþ1; . . . ;PN� 1 � PN), where N is the number of agents. In our 
work, we check trajectories for membership in an agent planning automaton, P i, 
which is equivalent to the number of NFA states F times the number of agent states 
A or jP ij ¼ jF j � jSAj unlike automata produced by constructing a product where 

jAprodj ¼ jF j � jSAj
N, thus jPij � jAprodj . Due to the checking of N agents in our 

framework, our algorithm can check trajectories with complexity of 
OðN � ðjηj � jPijÞÞ. Recall, that product automata have states that grow exponentially 
with the number of agents therefore, due to our algorithm being linear in the 
number of agents, N, we show our algorithm is far more scalable than other 
methods utilising product automata for task allocation. In addition to this, the 
runtime of the MTAC-E Algorithm, while heavily dependent on cost function choice 
and size of planning automaton, is ,300 seconds for the task allocation of three 
agents.
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5.3. Case Study: Fire Fighting Quadcopters (Introduction)

We motivate the application of Algorithm 2 with a firefighting quadcopters 
scenario. This scenario naturally fits within a discrete planning framework for 
a multi-agent system due to multiple environment constraints that need to 
be satisfied within a defined area (e.g. verifying safe regions, checking for 
water sources, etc.). In addition to this, agents may have internal constraints 
that need to be satisfied that can be developed as the internal transition 
system of an agent. The MTAC-E algorithm given a global goal, a finite 
automata describing the operational environment and individual internal 
state for a team of agents, optimally plans trajectories for a set of agents 
given the following problem definition. 

Example 2. For example, each agent may be a fire-fighting autonomous aircraft 
capable of collecting water, extinguishing fires and surveying goal locations. 
These agents are given the following global goal: ‘eventually visit LOC1 and LOC2 

and always ensure visiting SMOKE implies CARRYING’. Using LTL, this specifica
tion can be represented as ϕ ¼ }LOC1 ^ }LOC2 ^ ðSMOKE ) CARRYINGÞ.

According to our discrete planning framework, we define the internal state of 
the robot using Definition 4.1 where our robot is represented by a two state 
transition system with a transition denoted by whether it has visited the water 
location in the environment. A robot transitioning from the ‘NO WATER’ state to 
the ‘CARRYING’ state indicates the ‘WATER’ proposition was true in the environ
ment during that transition. In Figure 7 we represent the discrete internal transi
tion system of robot i as (Ri).

The environment transition system, Figure 8, is represented by a set of 
nodes corresponding to states with adjacent nodes in the graph represent
ing neighbours for potential paths through the state space. In simulation 
and experiment, we represent each node as an ellipsoid in R 3, defined in 
Section 2.

Using this definition, discrete transitions are identified when the relative 
position of a quadcopter transitions inside any of the regions of interest 
defined in the state space. In our case study, the environment proposition 
set is �E ¼ fWATER; SMOKE; LOC1; LOC2g. By taking the product we can 
generate the full agent automaton for each agent i such that Ai ¼ E �

Ri shown in Figure 9. Following the standard procedure for developing 
automata for robotic systems we generate a NFA from the finite-LTL 
specification and take the product with Ai for each agent to get P, an 
automaton that only accepts runs that satisfy the LTL specification and 
agent transition system.
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5.4. Simulation

We apply Algorithm 2 to the disjoint product of the n agents P automaton, 
T ¼ Pi [ . . . [ Pn. In order to generate trajectories from the given specifications 
we utilise a custom sequence planner that uses pre-selected trajectories based 
on a quadcopter’s position and speed relative to a labelled location (e.g. an 
ellipsoid’s location and generate splines between ellipsoids). After the initial 
trajectory for a given sequence is plotted, we use cross-entropy optimisation to 

minimise that trajectory over the cost function J ¼
ðT

0
jjηðτÞjj þ jjuðτÞjjdτ.

Figure 7. A transition system for a single agent which describes the internal state of a robot 
(Ri). All robots start at the initial state ‘NO WATER’ and a location-based transition is used to 
determine when to transition to the ‘CARRYING’ state. If a robot is in the environment state that 
satisfies the ‘WATER’ proposition, the robot can transition to the ‘CARRYING’ state.

Figure 8. The environment transition system where each state indicates a desired region of 
interest. The initial state of the environment is the ‘ROBOT’ state. In the fire fighting example, 
LOC_2, cannot be reached unless the quadcopter passes through the SMOKE region.
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The MTAC-E Algorithm samples trajectories from an unknown distribution 
that minimises the cost function, J , which is a function of the path length, ηðtÞ, 

and the control input, uðtÞ ¼ r
...

, where r ¼ ½x; y; z�T 2 R 3, the position of the 
centre of mass of the robot. We set λ ¼ 0, indicating a desired optimal cost for 
each agent of minimal trajectory length and cost. In general, a trade-off is made 
between picking a reasonable λ and algorithm run-time, which is why limiting 
the number of iterations is desirable.

Results are shown in Figure 10 where three quadcopters are shown satisfying the 
LTL formula ϕ. The resulting sequences are quad0 ¼ fWATER SMOKE LOC2g, 
quad1 ¼ fSMOKEg and quad2 ¼ fWATER LOC1g which results in a satisfying 
sequence for the entire input specification. The returned sequences are one of 
many satisfying sequences returned by a search over the team automaton, T , and 
additional constraints in the graph can modify which sequences are returned. In 
Figure 11, the cost per quadcopter over 12 iterations is shown for satisfying a single 
proposition (LOC2). In this example, the MTAC-E algorithm selects quad2 as the 
quadcopter to transition to LOC2.

6. Online MTAC-E

The MTAC-E algorithm developed in Section 4 allowed the use of a stochastic 
optimisation technique for task allocation of a multi-agent system. In addition to 
this, we utilise cost functions to assign agents a task based on the individual 
constraints of an agent and its environment. However, this algorithm was 
developed in an offline manner, meaning it must run to completion before 
tasks can be delegated to a set of agents. This is time consuming and detri
mental for time critical task assignment scenarios. The offline algorithm also 
considers optimal costs defined a-priori by an expert individual. This assumption 

Figure 9. The full agent transition system for a quadcopter. Transitions to the ‘CARRYING’ state 
can only be fulfilled once the agent has retrieved water from the environment node.
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Figure 10. Three quadcopters during a simulated fire fighting mission. The entire team is given 
the specification ϕ ¼ }LOC1 ^ }LOC2 ^ ðSMOKE ) CARRYINGÞ. Each quadcopter is consid
ered during the iteration through the product automaton of the system, switches to another 
quadcopter are considered when the cost is beneficial for the team.

Figure 11. The MTAC-E Algorithm iterates 12 times over a subset of trajectories and produces 
the trajectory with the lowest cost after all iterations. Here, we show the algorithm evaluating 
which quadcopter should transition to LOC2. This calculation is formulated in our cost function 
where we minimise the distance travelled and input to system. Each quadcopter executes the 
MTAC-E optimisation and after all quadcopters have completed the algorithm, the quadcopter 
with the lowest cost is selected to complete that task, in this example quad2 is choosen.
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makes it difficult for users to utilise this algorithm without prior information of 
the desired cost function, agent and environment that a multi-agent system will 
operate in. We solve both these issues by developing an online method of cross- 
entropy, modified to operate over multi-dimensional probability distributions. 
This method allows fast generation of trajectories in real-time and an expert 
independent method of optimal cost generation.

In order to apply an online version of the MTAC-E algorithm, we consider the 
trajectory X t sampled at time t. The trajectory X t ¼ ðX1t; . . . ;XntÞ is a vector of 
i.i.d. random variables X it drawn from known multivariate Gaussian distribu
tions Nðμ;�Þ. Similar to [32], we consider a sample, XNe , elite if at position 
ρ � jXj, with ρ> 0 and jXj the cardinality of the set of trajectories drawn at time t, 
it belongs to the subset of ordered trajectories fX0 <X1 < . . . <Xρ�jXjg. At each 
time step, this sample is chosen based on if its corresponding cost fðXNeÞ � λt 

where λt is the elite threshold. The threshold (λt) either increases, decreases or 
stays constant according to four cases depending on where the new sample and 
the dropout sample belong in the set of N trajectories:

(1) New sample ðX½Neþ1�Þ and dropout sample ðX½Ne�Þ are elite, this is a rare event 
with probability ρ and as such has a small probability of occurring. In this event, the 
threshold, DivyaP and threshold position stays the same and does not change.

(2) New sample is elite but dropout sample is not elite. In this case, the 
threshold value will increase by the difference in cost between the new sample 
and the sample at the end of the elite set such that 
λtþ1 ¼ λþ fðX½Neþ1�Þ � f ðX½Ne�Þ. This increase in λ is attributed to ‘expanding’ 
the search of trajectories with similar costs to gain membership to the elite set.

(3) New sample and dropout are not elite. The threshold will stay the same.
(4) New sample is not elite and dropout sample is elite. In this case, the 

threshold value will decrease since the thresholding may be too high for 
samples to be considered elite. Thus, the threshold is lowered 
to λtþ1 ¼ λþ f ðX½Ne� 1�Þ � f ðX½Ne�Þ.

Let Δt ¼ EðfðX½Neþ1�Þ � f ðX½Ne�ÞjGtÞ be the update step for the threshold 
where Gt is the σ-algebra of all known random outcomes up to time t and 
f ðX½Ne�Þ as the trajectory cost measured at the elite set threshold. Given that the 
sample positions within the set of trajectories are distributed uniformly, 

Eðλtþ1jGt; new sample is eliteÞ

¼ λt þ Pðcase 1Þ � EðfðX½Neþ1�Þ � fðX½Ne�ÞjGtÞ þ Pðcase 2Þ � 0 

¼ λt þ ð1 � ρÞ � Δt:

Likewise, for the non-elite sample case 

Eðλtþ1jGt; new sample is not eliteÞ
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¼ λt þ Pðcase 3Þ � 0þ Pðcase 4Þ � EðfðX½Ne� 1�Þ � f ðX½Ne�ÞjGtÞ

¼ λt � ρ � Δt:

The update step is equivalent to the product of the average difference between 
samples and the difference between X t evaluated at the ρth probability and 1 
sample above it. In order to create an update step for trajectories sampled from 
a Gaussian distribution, we develop a Gaussian approximation for multivariate 
distributions. Prior works that utilise online cross entropy for task allocation 
used an update step based on uniform or univariate Gaussian distributions, 
relying on one dimensional samples. Our work extends this by formulating an 
update step for multivariate Gaussian distributions in the following section.

6.1. Developing the Update Step

The update step for samples from multivariate distributions will be a n matrix 
corresponding to n samples from X t , with each sample a m-dimensional vector. 
Consider a continuous update step that measures samples from normal distribu
tions according to the desired ρth percentile. From the inversion principle [33]:

Fact 6.1. Let Φ be the cumulative distribution function on R n with the inverse 
Φ� 1 defined as 

Φ� 1ðpÞ ¼ inffx 2 R n : ΦðxÞ � p; 0< p< 1g: (9) 

(1) If U is a uniform [0, 1] random variable then Φ� 1ðUÞ has distribution Φ.
(2) If X has distribution Φ, then ΦðXÞ is distributed uniformly on [0, 1]. 

Proof. The first statement can be verified through 

PðΦ� 1ðUÞ � xÞ ¼ Pðinffy 2 R n : ΦðyÞ � Ug � xÞ ¼ PðU � ΦðxÞÞ ¼ ΦðxÞ:

The second statement is a result of the following relationship
PðΦðXÞ � uÞ ¼ PðX � Φ� 1ðuÞÞ ¼ ΦðΦ� 1ðuÞÞ ¼ u The normal distribution we 

sample from is not a standard distribution, therefore our inverse function Φ� 1 is 

F� 1ðρÞ ¼ μþ � � Φ� 1ðρÞ (10) 

where ρ is the desired percentile of Nðμ;�Þ and � is the covariance matrix. In 
[34], the average of two samples from a normal distribution is 2σ=

ffiffiffi
π
p

, extending 
to the multivariate distribution case, we form Δt ¼ EjX1 � X2j � δF� 1ðρÞ as the 

difference between the quantile functions for a particular sample weighted by the 
expectation of two samples from a normal distribution with known parameters 
such that 

δF� 1ðρÞ ¼
1
2

F� 1ð1 � ρþ
1
N
Þ � F� 1ð1 � ρÞ (11) 
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Δt ¼
1
ffiffiffi
π
p � �½F� 1ð1 � ρþ

1
N
Þ � F� 1ð1 � ρÞ�: (12) 

This formulation of Δt is a matrix and a scalar form is desirable for doing 
computations on λ, another scalar. We propose the following definition to 
achieve a scalar approximation of delta, Δet.

Fact 6.2. Let Δt be the multivariate update step for threshold cost, λ. The 
scalar approximation of Δt is formulated as 

Δet ¼ min
i

Xm

j¼1

jΔijj 2 R (13) 

minimising the sum of quantile differences and returning the smallest differ
ence between quantile samples.

Using Δet 
we update the desired threshold λt in real-time as samples are 

acquired. However, the quantile function ΦðxÞ is not easily acquired. In the 
next subsection, we define how to sample from a hyperellipsoid to generate 
uniformly sampled points from the ρth quantile of ΦðxÞ.

6.2. Generating Quantile Function for Multivariate Gaussian

We begin by defining our problem as finding the contour line of a hyperellipsoid 
derived from the parameters of Nðμ;�Þ.

Fact 6.3. Let Y be a sample from the surface of the hyperellipsoids with the 
following form 

ðY � μ ÞT �� 1ðY � μ Þ � c2 

Where c is the desired distance of Y from mean μ . A semi-axis of the hyper
ellipsoid is σi ¼ �c

ffiffiffiffi
γi
p

vi and contains 100(1-ρ)% of the sampling distribution 
and c2 ¼ χ2

ρ;α, the chi-squared distribution for α degrees of freedom measured at 

its ρth value.
Proof. The eigendecomposition of the covariance matrix is � ¼ VDVT , with 

V as the eigenvector matrix and D as the diagonal matrix of eigenvalues γi. We 
find the square root of � ¼ VS1=2VT . � ¼ ΛΛT where Λ ¼ VD1=2. The matrix Λ 
scaled by a factor c results in Λ� ¼ cΛ and likewise �� ¼ c2ΛΛT ¼

c2VD1=2D1=2VT ¼ c2� which determines the contour of the distribution consid
ered by the sampled vector Y.

With our desired distance value, c, we project points sampled from a uniform 
hyperspheroid, R, onto the covariance �, shifted by the mean vector, μ. The 
points from hyperspheroid, R are sampled using the following algorithm [35] 
and we develop the following algorithm for sampling from quantile functions of 
multivariate distributions:
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Algorithm 3: Quantile Sampling

We provide a brief description of Algorithm 3 here. We begin with sampling 
the chi-squared distribution for a desired number of samples m at percentile ρ 
with α degrees of freedom at line 1. Followed by this, we find the square root of 
the received value and store it as c. We find the eigendecomposition of the 
covariance and its corresponding square root followed by the definition of Λ at 
line 4. Afterwards we follow the developments from [35] to sample from 
a hyperellipsoid. In line 6 we take the square root of the sum of squares of 
samples from a normal distribution sampled m times. The matrix Xnz results in 
points uniformly distributed on a hypersphere. Because we wish to access the 
values of this hypersphere stretched by c� and centred on mean z, we apply the 
linear equation in line 10 to find points sampled from the ρth quantile, as shown 
in Figure 12 over 5 selected means. This proposed method allows us to sample 

Figure 12. Samples drawn from the inverse distribution F� 1 are shown in the above plot. Sample 
means μ are measured and shifted by the quantity given by the product of the covariance of 
Nðμ;�Þ and the standard normal inverse function Φ� 1 evaluated at the ρth quantile. In these 
plots, sample means are measured via the straight line distance between a quadcopter and the 
desired hoop, the covariance matrix is � ¼ 0:05 � I and ρ ¼ 0:05. At each iteration, new samples 
are drawn from the quantile F� 1, here we show samples, corresponding to points drawn at the 
ρth quantile, drawn at different times during the runtime of the sampling algorithm. The final 
iteration at t =10 contains the trajectory the quadcopter follows.
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from a desired percentile of our sampling distribution for multivariate 
Gaussians. Desired trajectories corresponding to elite samples can be drawn 
from this sampling function and we use this sampling function to generate Δt at 
each iteration.

6.3. Online Cross Entropy

Algorithm 4: Online Cross Entropy

In Algorithm 4 from lines 1–5 we check if the run is the first run of the 
algorithm, if true, initial means μt are generated based on the current 
position of the quadcopter (r) and position of the hoop (H). In addition to 
this we generate covariances (�), a randomly generated value for the desired 
cost (λ) and Δt is generated from the Quantile Sampling function where we 
assume that the samples are generated from a distribution with N trajec
tories. If the run is not the initial run, we use the previous μ; λ; and Δt . 
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Following this, we perform the matrix operation from Equation 13 on Δt. We 
sample a trajectory X t from a normal distribution by interpolating between 
path samples drawn from the distribution using the means and covariances 
previously acquired. If the cost function f ðX tÞ and the trajectory satisfy the 
constraint in line 14 then λt is increased. Otherwise, λ is decreased condi
tional on the case that the trajectory goes through the hoop but does not 
satisfy the cost constraint. Finally, Δt is updated and we return the pose in X t 

that corresponds to time t.

6.4. Update Δt Threshold

Our value for incrementing the desired threshold, γ, can also be modified with 
an exponential factor β ¼ ae� bt with a; b> 0. The delta threshold is updated at 
each time step t such that Δetþ1

¼ ð1 � βÞΔet þ βjf ðxtÞ � f ðxtþ1Þj. Using this 

update formulation, initially, Δet 
weights information from the costs between 

samples as more important than prior Δet 
values. This is beneficial for us since our 

samples are drawn uniformly from a quantile function whose initial samples 
may not be reliable but allows a sufficient search of the cost function space of 
nearby samples.

In Figure 13 we show how varying values of a and b affect the convergence of 
Δet . In this figure, we plot the change in Δet 

as the quadcopter runs the online 

cross entropy algorithm to converge to a desired hoop in 10 seconds. Initial Δet 

Figure 13. The time evolution of Δet 
for varying values of a and b. From the figure, a greater 

value of a and b indicate a greater dependence on the absolute error in sample trajectory costs 
fðXÞ initially. This causes a greater change in magnitude of the step size of Δet 

than in smaller 

values of a and b and may reduce the sensitivity of the algorithm to desirable values of Δet . We 
observe through empirical tests that values near a ¼ 0:01 and b ¼ 0:001 provide a reasonable 
trade-off between utilising the trajectory costs and prior step size Δt for updating Δet .
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update values can vary due to dependence on f ðX tÞ, so instead we focus on the 
convergence rate of each plot. We can see that for a ¼ 0:1 and b ¼ 0:01 as time 
progresses, Δet 

quickly converges to a value close to zero as Δet 
moves from 

reliance on relative difference in measured cost to previous Δet 
values. On the 

other extreme, for a ¼ 0:001 and b ¼ 0:0001, Δet 
does not move far from its 

initial value and stays near the value it eventually converges to during the run 
time. For all experiments, we chose a ¼ 0:01 and b ¼ 0:001 due to the values 
allowing for initial cost consideration, followed by slow convergence to values 
closer to expected quantile differences.

6.5. Online MTAC-E Algorithm

Algorithm 5: Online MTAC-E Algorithm

The Online MTAC-E algorithm presented in Algorithm 5 proceeds in the 
following section. The current robot poses for n robots is given, the time t, 
and the desired LTL specification (ϕ) to be satisfied. If the algorithm is in its 
first iteration we generate the sequence of propositions that satisfy the 
specification, otherwise we store this desired sequence for future iterations. 
Then for each node, in lines 5–14 a series of checks are done to verify if the 
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node has been satisfied or if all the nodes have been satisfied. In addition 
to this, we track if each agent has had a chance to be assigned 
a proposition, when all agents have an assignment, the desired states are 
sent to each robot. If the robots are in the decomposition set D we 
consider the switch condition where each agents current state, desired 
trajectory to node q, and the cost function fiðx; uÞ associated with 
a particular agent to assign the node to the agent with the lowest cost. If 
the node is not in the decomposition set, the online cross entropy algo
rithm executes for a single agent. Due to the node not being in the 
decomposition set, once an agent is assigned to the set �D ¼ fq 2 �Djqi�q0 ^

ðqi; qiþ1Þ 2 EDg it may not transition to the decomposition set for the 
remainder of the run. The set of states p are returned for each robot 
agent where each state is the chain of integrators state referred to in 
Section 2. We have now formally generated an online method for task 
allocation using the stochastic optimisation technique, cross entropy, for 
quadcopters. However, now we verify the algorithm against the offline 
version followed by experimental results.

6.6. Comparison to Offline MTAC-E

In this section we compare the efficiency defined as the individual agent 
costs and run time performance of the online MTAC-E with the offline 
version. In Figure 14, we compare the sum of agent costs for a predefined 
number of agents ranging from 1–5. For each run, we assign the agents to 

Figure 14. We compare the total trajectory costs for separate runs of the online and offline 
MTAC-E algorithm. We can see that the total costs associated with different numbers of agents 
is reduced for agents in the online case. This is due to a measurement of a known quantile 
function of a distribution and an optimal trajectory cost that is randomly initiated and updated 
at each sample step. This reduces the need of an expert to determine optimal costs for 
a particular domain.
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satisfy the LTL specification . From the figure, we see that the online 
method is more efficient at overall task assignment as total agent costs 
are greatly reduced compared to the offline version. This is due to the fact 
that we must initially set an estimate for optimal costs for the offline 
MTAC-E while the online version can use a random estimate for optimal 
costs and iterate towards a local minima that is more efficient. In addition 
to this, a higher estimate of optimal costs needs to be given for the offline 
version in order for faster execution time otherwise the completion time 
of the program could be significantly long. However, we note there is an 
increase in the sum of agent costs since in the online MTAC-E algorithm, 
each time an agent is considered for a new task, the cost is added to the 
total trajectory cost for that agent.

Run time comparisons are done on a laptop with a 2.6 GHz Intel i7-4720HQ 
processor using the time module in Python. Each run is done in simulation 
and execution times are measured against complete satisfaction of the given 
LTL specification. We see from Figure 15 a 3x – 5x factor of reduction of 
runtime for agents 1–5 indicating a faster algorithm for multi-agent task 
allocation.

From simulation results, we see the online MTAC-E algorithm is not only more 
efficient at minimising the total costs for a multi-agent system but also in 
reducing individual agent costs and the overall run time associated with allocat
ing tasks to a multi-agent system. We also verify our online algorithm experi
mentally in Section 7.

Figure 15. We compare the time to completion for both the online and offline MTAC-E 
algorithm. For all runs of the online MTAC-E with various numbers of agents considered, 
a lower total run-time is achieved.
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7. Case Study: Fire Fighting Drones (Experiment)

Experiments are validated on the Robotarium at Georgia Tech [36] using the 
Crazyflie 2.1 quadcopters. Control inputs are calculated from continuously 
differentiable splines generated online from desired waypoints using the 
differential flatness property of quadcopters described in Section 2.3. 
Quadcopter positions are tracked with a Vicon camera system with 
a tracking frequency of 100 Hz and the controller generates control inputs 
at a frequency of 50 Hz.

We recreate the simulated scenario of fire-fighting quadcopters by 
indicating desired regions of interest with hoops, characterised by ellip
soids, pictured in Figure 16b.1 These hoops are covered with Vicon 
tracking markers, allowing us to record the corresponding centre of the 
hoops and from the centres form the proposition sets. The regions of 
interest are satisfied if a quadcopter flies within 0.2 metres of the hoop. 
We give initial starting positions of 
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for three quadcopters and the desired global LTL specification 
ϕ ¼ }LOC1 ^ }LOC2 ^ ðSMOKE ) CARRYINGÞ. We plot the real trajectories 
of the quadcopters in Figure 16a and given the initial positions, control 
inputs and global LTL specification we utilise the online MTAC-E algorithm 
to generate trajectories in real-time for each quadcopter. The assignments 
shown in the figure are dynamically allocated tasks given to each robot 
based on the individual cost function associated with each agent and 
environment constraints. These assignments are not strictly assigned and 
could change given new information (e.g. more samples from the online 
cross entropy algorithm) or a different cost function. We run the algorithm 
on a desktop with an Intel Core i7-7700 K processor with 16 GB of RAM. 
The total run time of the experiment is 127 seconds and terminates when 
the entire desired sequence of hoops is satisfied for a specified LTL 
specification. Through this experiment, we show the implementation of 
the online MTAC-E algorithm on quadcopters which validates our task 
orchestration framework by decomposing a specification, delegating 
tasks and generating trajectories in real-time for a set of quadcopters.
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8. Conclusion

In conclusion, we have generated a framework for generating sequences of 
hoops from user defined LTL specifications. Followed by a method for multi- 
agent task allocation utilising this framework in addition to a stochastic optimi
sation technique for assigning decomposed assignments to agents with 
unknown action costs and a known cost function. We extend the multi-agent 

Figure 16. The trajectories of the quadcopters and a visualisation of the experimental run are 
shown in the figure above.
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task allocation methodology to generate desired trajectories online via hyper
ellipsoid sampling and estimation of minimal quantile distribution differences. 
This allowed us to create a faster and more efficient method of trajectory 
sampling for multi-agent task allocation given an LTL specification that con
tained system and environmental constraints. To the authors knowledge, this is 
one of the first papers to develop online task allocation for quadcopters using 
cross entropy optimisation and validate the algorithm experimentally on hard
ware. In addition to this we propose a formulation for the update step using the 
quantile functions of multivariate Gaussian distributions. We verify this in 
experiment and simulation as a task orchestration framework for decomposing 
and delegating tasks and generating trajectories for a multi-agent system to 
satisfy high-level user specifications given these constraints.

Note

1. Experiment Video: https://youtu.be/U9OZ_tGr4AsOnline Multi-Agent Task Allocation 
via Cross Entropy.
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