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Abstract: In this paper, we propose a control scheme that allows generic commercial multirotor
Unmanned Aerial Vehicles (UAVs) to infer human intent from physical interaction. Humans
apply forces by touching it or pulling a nylon string attached to the body frame of the vehicle.
The estimations of these forces, obtained via a square root unscented Kalman filter, are used
by an admittance controller to generate a reference trajectory such that the vehicle reacts as a
desired mass-damper system. To track this trajectory, the differential flatness property of the
multirotor dynamic model is exploited. This, in fact, allows the generation of any possible kind
of input required by the on-board controller supplied by the manufacturer. We validate our
results experimentally on a Parrot Bebop 2 quadrotor, a commercially available UAV.

Keywords: Physical Human-Robot Interaction; Aerial Robots; Force Estimation; Admittance
Control; Differentially Flat Systems.

1. INTRODUCTION

Physical interaction between UAVs and humans is tra-
ditionally considered to be dangerous and undesirable.
However, due in part to the new mechanical design for safe-
to-touch multirotor UAVs (Capunay et al., 2019; Yamada
et al., 2019), such interactions are increasingly encouraged
and exploited in different applications including search
and rescue (Fotokite, 2020), aerial transport (Rastgoftar
and Atkins, 2018), and haptic feedback in virtual reality
(Knierim et al., 2017; Abdullah et al., 2018). A crucial
aspect for deploying any application based on the physical
human-UAV interaction is maintaining safety of the op-
erator by ensuring that the UAVs respond as expected to
external forces while subject to various constraints in their
dynamics and controller design. Existing approaches pro-
pose novel, and usually expensive, hardware designs capa-
ble of, e.g., directly measuring the applied forces (Rajappa
et al., 2017). In this paper, we propose a control scheme
for interaction between a human and a multirotor UAV
suitable for deployment on commercially available multi-
rotor models. One approach to human multirotor physical
interaction is through an admittance control framework.
This approach provides a means to modify the effect
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of an external force applied to a multirotor in order to
move it in a safe and effective way. Admittance control
is common for manipulation of robotic arms (Ott et al.,
2010) and humanoid robots (Caron et al., 2019), and has
also been used for multirotor control to generate compliant
trajectories. In (Augugliaro and D’Andrea, 2013) physical
interaction with a custom built quadrotor is provided by
an admittance controller and a Kalman filter that esti-
mates the external forces and the state of a quadrotor in
the near-hover configuration. In (Tagliabue et al., 2017)
the same approach is exploited for collaborative carrying
among appropriately equipped hexarotors. In (Rajappa
et al., 2017), a custom quadrotor equipped with a ring
of force sensors, is able to distinguish between applied
forces and rejected disturbances which are used by an
admittance controller through a modified geometric track-
ing controller. These approaches for physical human-UAV
interaction are expensive, require expertise in multirotor
design, sensor calibration and system parameter identi-
fication techniques, or rely on linearizing the dynamics,
which restricts the applicability of the method. This paper
presents an approach that addresses the limitations of
these previous works and extends the possibility of phys-
ical interaction between humans and UAVs to all those
commercial models for which the manufacturer provides
a Software Development Kit (SDK) that allows the use
of the on-board controller (e.g., (DJI, 2020) and (Parrot,



2020a)). The proposed control scheme, in fact, does not
rely on specialized hardware or additional sensors on-
board the UAV. Differential flatness theory, in particular,
allows us to use the reference trajectory generated by
the admittance controller and its successive derivatives
to compute any kind of input required by the on-board
controller provided by the manufacturer. As shown later,
this is possible because, according to this theory, the flat
outputs of the multirotor dynamic model coincide with
the trajectory generated by the admittance controller.
Through a laboratory experiment we demonstrate the use
of numerical approximations for the calculation of deriva-
tives of the reference trajectory. Moreover, depending on
whether the UAV is safe to touch or not, the interaction
may be through direct physical contact or via the attach-
ment of a negligible mass string to the body frame of the
UAV. The main contribution of this work is the develop-
ment of a control scheme, based on mechanical admittance
control and differential flatness theory, that allows for the
first time a human to physically interact with commer-
cially available multirotors. This is achieved by not using
any additional force sensors, motor encoders or specialized
hardware. In addition to this, we verify the applicability
of the proposed scheme by laboratory experiments. This
paper proceeds in the following manner. In Section 2, we
introduce the quadrotor model. In Section 3 we define the
admittance controller dynamics, discrete derivative filter
and derivations of control inputs from the generated flat
outputs. Finally, in Sections 4 and 5 we validate our control
scheme experimentally on a motion capture testbed and
present concluding remarks, respectively.

2. MULTIROTOR MODEL

The mathematical model used in this work is based on the
following assumptions:

• The center of gravity (CoG) of the multirotor and the
origin of the body-fixed frame coincide.
• The multirotor body is rigid and symmetric with

respect to the three planes generated by the body-
fixed frame.
• Aerodynamics effects due to blade flapping and in-

duced drag together with the gyroscopic effect are
neglected; for commercial multirotors, in fact, such re-
lated coefficients are not available (Chovancová et al.,
2014).
• Only an external torque on the z-axis of the body-

fixed frame is considered.
• No disturbance force, such as wind, is considered.

We label the inertial frame {I} and the non-inertial body-
fixed frame {B}, both with right-handed coordinates. As
left subscripts, these labels indicate the reference system
with respect to which a quantity is expressed (see Fig. 1).
To express attitude, the Z-Y-X Euler angle convention is
used. Therefore the rotation matrix from {B} to {I} is
IRB = Rz(ψ)Ry(θ)Rx(φ) with φ, θ and ψ representing the roll,
pitch and yaw angle, respectively, and Rz(·), Ry(·), and Rx(·)
indicating rotation about the body-fixed z, y, and x axes.

Fig. 1. Schematic representation of the Parrot Bebop 2
quadrotor. The body-fixed frame {B} is placed in
the “X” configuration with the z-axis in the oppo-
site direction of the gravity force fg. Rotor rotation
directions are shown together with the thrust forces
and induced moments.

2.1 Model equations

With the above hypotheses, we write Newton’s equation
of motion expressing the linear acceleration of the CoG in
the {I} frame as

I p̈ = −Iez g +
1

m

(
IRB Bezft + If

ext
)

(1)

where I p̈ = [ ẍ, ÿ, z̈ ]T is the acceleration; g is the gravity
constant; m is the mass of the vehicle; ft is the total thrust
generated by the rotors; Bez ∈ R3 is the unit vector along

the body-fixed frame z-axis; and If
ext ∈ R3 is the vector

of the external forces acting on the multirotor.

The angular acceleration, expressed in the {B} frame, is
determined by the Euler equation

Bω̇ = BJ
−1
(
−Bω × BJBω + Bτ

rot + Bezτ
ext
)

(2)

where Bω = [p, q, r]T is the angular velocity vector;

Bτ
rot = [τx, τy, τz]

T is the vector of the torques generated
by the rotors; Bezτ

ext is the external torque applied
around the body-fixed frame z-axis; and BJ ∈ R3×3

is the moment of inertia matrix. Since the multirotor
is considered symmetric this is a diagonal matrix, i.e.,

BJ = diag(Jx, Jy, Jz).

2.2 System Input

Each rotor has an angular speed ωi and produces along the
rotation axis a thrust force, fi, and an induced moment,
τi, according to

fi = kfω
2
i , τi = kτω

2
i i ∈ {1, 2, . . . , n}, (3)

where n is the number of rotors, kf and kτ are two aggre-
gate parameters that describes the static thrust force and
reaction torque respectively (McCormick, 1994). Since the
motor dynamics are much faster than the body dynamics,
the motor dynamics are usually ignored for controller de-
sign (Mellinger and Kumar, 2011). Then the system input,
u ∈ R4, is formed by the total thrust and the torques
generated around each axis by the rotors. The relationship
between the rotor velocities and the input is given by

u = [ ft, τx, τy , τz ]T = Λ Ω (4)

where Λ ∈ R4×n is known as the allocation matrix and
depends on the geometrical design of the multirotor and
on the kf and kτ parameters; Ω = [ω2

1 , ω
2
2 , . . . , ω

2
n]T ∈ Rn

is the vector with the square of the rotors velocities.



2.3 State-space representation

Considering (1) and (2), a possible state space represen-
tation is formed by the position and velocity of the CoG
expressed in the {I} frame, the attitude parametrized with
the Euler angles and the angular velocity vector expressed
in the {B} frame so that the system state is

s = [Ip
T ,ηT , I ṗ

T ,Bω
T ]T

= [(x, y, z), (φ, θ, ψ), (ẋ, ẏ, ż), (p, q, r)]T ∈ R12.

To complete the state space equations, the Euler angles
are obtained according to

η̇ =

[
1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

]
Bω (5)

which allows large angle deviations from the hover con-
dition. To apply the proposed strategy, a time-discretized
version of (1), (2) and (5) is needed. This takes the form

sk+1 = f
(
sk,uk, If

ext
k , τextk , Ts

)
(6)

where Ts is the sampling time and we assume f is obtained
using the forward Euler discretization method.

3. CONTROL STRATEGY

The design of our control system is mainly driven by
its applicability on existing commercial multirotors. Its
operation can be described in four steps:

(1) Using the pose of the multirotor and the rotor velocity
input, a Square Root Unscented Kalman Filter (SR-
UKF)(Van der Merwe and Wan, 2001) estimates the
state of the multirotor together with the external
force applied to the CoG and the torque on the z-
axis of the body-fixed frame.

(2) An admittance controller generates a reference trajec-
tory and its derivative for the position and the yaw
angle, in order to shape the behavior of the multirotor
as a mass-damper system excited by the estimated
force and torque.

(3) A discrete filtered derivative system is applied to
compute up to the third derivative of the trajectory.

(4) From differential flatness theory, the input for the
multirotor is generated for the on-board controller in
order to follow the desired trajectory.

Fig. 2 shows how the different modules are connected.

3.1 Square Root Unscented Kalman Filter for Force and
Torque Estimation

Taking inspiration from (Crassidis and Markley, 2003)
and (D’Alfonso et al., 2015), we propose the SR-UKF
to estimate the external force and torque applied to the
multirotor. This version of the unscented Kalman filter
guarantees all the advantages of the unscented transforma-
tion and at the same time is computationally more efficient
than the classic version reported in (Julier and Uhlmann,
1997).

Process model We introduce an augmented state s̄k =

[ sTk , If
extT

k , τ extk ]T ∈ R16. Considering the force vector
and torque update functions

If
ext
k+1 = If

ext
k (7)

τ extk+1 Bez = τ extk Bez (8)

and joining (6), (7) and (8), we write the process model
update function as

s̄k+1 = f̄(s̄k,Ωk, Ts) +wk, wk ∼ (0,Q) (9)

with Q ∈ R16×16 as the constant process noise covariance
matrix, which is a filter tuning parameter. The data of the
rotor speeds squared (Ωk) are used to calculate the input
vector uk by inverting (4) and then update (6) that is part
of (9).

Measurement Model We assume the pose of the multi-
rotor is directly measured by an external motion capture
system or by a visual-inertia navigation system. There-
fore, the measurement model takes the form of the linear
equation

yk = Hs̄k + vk = [ Ip
T
k , η

T
k ]T + vk, vk ∼ (0,R) (10)

where H = [ I6×6 06×10 ] and R = diag
(
1T3 σ

2
p,1

T
3 σ

2
η

)
is

the measurement noise covariance matrix formed by σp
and ση that are, respectively, the position and attitude
measurement standard deviations.

Prediction and update steps The prediction step follows
the classic equations, while the update step reduces to
the standard Kalman filter equations because of the linear
measurement model (see (Tagliabue et al., 2017)), further
reducing the computational load.

3.2 Generation of Desired Trajectory via Admittance
Control

Admittance control is a popular technique in the field of
human-robot interaction (Keemink et al., 2018). It allows
a human operator to modulate the interaction behavior
by controlling robot motion according to the estimated or
sensed force exerted by the human. Admittance control is
applicable to human-multirotor interaction where the rela-
tionship between motion and force variables is controlled
by imposing a virtual inertia, damping and stiffness to
the multirotor about each axis of movement and the yaw
rotation axis. In our case, this leads to two equations. For
the linear movements

MI p̈r +CI ṗr = I f̂
ext

(11)

where Ipr is the reference motion resulting from the
interaction; and M = diag(Mx,My,Mz) and C =
diag(Cx, Cy, Cz) define, respectively, the virtual inertia
and damping. Similarly for the rotation around the z axis
of {B},

Jψψ̈r + Cψψ̇r = τ̂ ext (12)

where ψr is the reference yaw angle and Jψ, Cψ are, re-
spectively, the virtual inertia and damping. In our control
scheme, however, we have a discrete time estimation of the

force (I f̂
ext

k ) and torque (τ̂ ext
k ). For this reason, (11) and

(12) are discretized via the forward Euler method. Finally,
we can introduce

r = [ rx, ry , rz , rψ ]T , [ Ip
T
r , ψr ]T (13)

to define the desired trajectory.



Fig. 2. The full control scheme of our proposed admittance control framework. A human operator acts on the multirotor
with an external force and torque. The estimations of these quantities update the admittance controller that
generates a reference trajectory such that the vehicle reacts as a desired mass-damper system. This trajectory and
its derivatives calculated by discrete derivative filters are used to generate the manufacturer-defined input from the
differentially flat multirotor dynamics. The dashed line, finally, represents the pose of the vehicle used to initialize
the admittance controller.

3.3 Discrete filtered derivative

In order to use a controller based on the differential flatness
property of the multirotor model, the derivatives of the
desired trajectory need to be continuous up to the third
order. In our case, however, the trajectory is generated on-
line via the admittance controller and, thus, an analytical
continuous trajectory r ∈ C3 is not available. To overcome
this issue, we numerically compute the second and third
derivative of the references generated by the admittance
controller. We avoided the use of the analytical second
derivative given by the admittance controller because of
its direct relationship with the estimated force in (11).
This, in fact, makes the analytical derivative sensitive
to the oscillations of the estimation thus worsening the
numerical computation of the third derivative (see Fig. 3).
Equations (11) and (12) describe four independent second-
order dynamical systems. The state, for each of them, is
formed by the physical quantity described and its first
derivative. Starting from this derivative, we twice compute
a filtered numerical derivative using the transfer function

D(s) =
s

Ts+ 1
(14)

where the time constant T is properly tuned to balance
the smoothness and delay of the output. A discrete-time
version of (14) is used in our control scheme.

Remark 1. This approach does not formally guarantee the
continuity of the generated derivatives that is required by
the differential flatness theory. However, properly choosing
the time constant T and the sampling time Ts in our sim-
ulation tests like the one reported in Fig. 3, demonstrates
behavior approximate to that of continuous functions.

3.4 Dynamic Control Input Generation via Differentially
Flat Outputs

Differential flatness is a well known property of many dy-
namical systems (Sira-Ramirez and Agrawal, 2018; Mur-
ray et al., 1995). This property allows the expression of
the full state and the input of the system as functions of
the flat output and its time derivatives. In other words,
h = gh(s,u,u(1), . . . ,u(j)) is considered a flat output for

0 2 4 6 8 10 12
Time (s)
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-0.05

0
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reference discrete derivatives

1st derivative
2nd derivative
2nd filtered derivative
3rd filtered derivative

Fig. 3. A simulation of the discrete-time version of the
proposed derivative filter using Ts = 0.01 s and T =
0.3. The admittance controller reference is not shown
to better visualize the derivatives.

j finite derivatives of input u if there exist two functions
s = gs(h,h

(1), , . . . ,h(l)) and u = gu(h,h(1), . . . ,h(m))
such that both the state (s) and the input (u) can be
uniquely expressed as functions of the specified output and
its l and m finite derivatives, respectively.

As shown in (Mellinger and Kumar, 2011) and (Fer-
rin et al., 2011), for the multirotor model described in
Section 2, a possible choice of the flat output is h =
[x, y, z, ψ ]T that allows the inference of the complete
state (s) and input (u) with the appropriately defined
functions. This means that by using the trajectory gen-
erated by the admittance controller r = [ rx, ry, rz, rψ ]T

and its derivatives, it is possible to deduce the full state
corresponding to the particular reference.

In the next section, we show how we leverage differential
flatness theory to control a particular type of commercially
available quadrotor. However, we note that this technique
can be applied to any multirotor provided the desired
inputs can be generated from our choice of flat outputs.

4. EXPERIMENTAL RESULTS

Experiments are conducted on a Parrot Bebop 2 quadrotor
UAV. Considering the rotors rotation directions and the



Fig. 4. An image captured of the experimental setup. A
user interacts with the Bebop 2 quadrotor via a string
attached to the body frame.

“X” configuration shown in Fig. 1, the allocation matrix
is

Λ =
1
√

2


√

2 kf
√

2 kf
√

2 kf
√

2 kf
−d kf −d kf d kf d kf
−d kf d kf d kf −d kf
−
√

2 kτ
√

2 kτ −
√

2 kτ
√

2 kτ

 (15)

where d is the distance from the CoG to each rotor. All
the physical parameters are retrieved from the code of the
Parrot-Sphinx simulation tool (Parrot, 2020b) and can be
viewed in (Silano et al., 2019). As defined above, standard
control inputs for multirotor control are the thrust and
torque vector. However, our system relies on the the
ROS bebop autonomy package that is based on the Parrot
official ARDroneSDK3 (Monajjemi, 2020; ARDrone, 2020)

and receives as input the vector ν , [φd, θd, ψ̇d, I żd ]
whose components are the desired roll angle, pitch angle,
yaw rate and vertical velocity in the inertial frame. Using
differential flatness, these quantities are derived as the

following: φd = atan2

(
β2,
√
β2
1 + β2

3

)
, θd = atan2 (β1, β3),

ψ̇d = ṙψ and I żd = ṙz where we define β as

β(r, ṙ, r̈) =

[
β1
β2
β3

]
,

[
− cos(rψ) r̈x − sin(rψ) r̈y
− sin(rψ) r̈x + cos(rψ) r̈y

−r̈z + g

]
. (16)

To improve the performance of the control loop, we add a
feedback term governed by four PID controllers. Our entire
input vector is then

ν =

 φdθd
ψ̇d
I żd

+ KP

 ex
ey
eψ
−ez

+ KI


∫
ex∫
ey
0
−ez

+ KD

ėxėy0
0

 (17)

where KP, KI and KD are positive gain diagonal matrices
and ex , rx − x where x is the position of the quadrotor
returned via a motion capture system, and ey, eψ and
ez are defined similarly. In this experiment, the reading
frequency of the rotor speed commands limited the update
frequency of the filter, thus degrading its performance. For
this reason, in practice, we use the motion capture system
measurements. As mentioned previously in the presented
scheme, we require time discretization of this subsystem.
The derivatives of the reference r are substituted with the
discrete time numerically computed versions. All computa-
tions are done on a PC workstation and the control input
vector, ν, is transmitted to the Bebop 2 quadrotor via a
ROS topic over Wi-Fi. In the following, we first report the
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(a) Estimation of force on the x-axis exerted by a spring with
spring constant(k = 7 N m), displaced by 20 mm. A force is
applied for 0.6 seconds until the spring is displaced a desired
amount.
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(b) Estimation of force on the y-axis exerted by a spring with
spring constant(k = 7 N m), displaced by 30 mm. A force is
applied for 1 second until the spring is displaced a desired
amount.
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(c) Estimation of the force exerted by a mass of 0.1 kg attached
near the CoG of to the Bebop 2 quadrotor via a nylon string.

Fig. 5. Validation of the UKF Force Estimation on the X,
Y, and Z axes of the Bebop quadrotor. The actual
force applied is shown via the dashed line. The start
(black) and end (purple) points indicate the times
where a force is applied. Estimated forces for the X,
Y, Z axes are generated from the UKF and are shown
via the red, green and blue curves.

validation of the SR-UKF and then we show the tracking
performance of the proposed control scheme.

4.1 Estimating Force on the Ix, Iy, and Iz axes

With the aim of making this strategy accessible to as many
users as possible, we avoided the use of expensive three-



5 6 7 8 9 10 11 12 13 14 15
-1

0

1

X
 p

o
si

ti
o
n
 [

m
]

X
 F

o
rc

e
 [

N
]

X-Axis
Ad. Ctrl. Reference
Bebop X-position
Estimated Force (X)

5 6 7 8 9 10 11 12 13 14 15

-1

0

1

Y
 p

o
si

ti
o
n
 [

m
]

Y
 F

o
rc

e
 [

N
]

Y-Axis
Ad. Ctrl. Reference
Bebop Y-position
Estimated Force (Y)

5 6 7 8 9 10 11 12 13 14 15
-2

0

2

Z
 p

o
si

ti
o
n
 [

m
]

Z
 F

o
rc

e
 [

N
]

Z-Axis
Ad. Ctrl. Reference
Bebop Z-position
Estimated Force (Z)

0 5 10 15
Time [s]

-20

0

20

Ya
w

 a
n

g
le

 [
d
e
g
]

To
rq

u
e
 [

cN
 m

]

Yaw-Axis
Ad. Ctrl. Reference
Bebop Yaw
Estimated Torque

Fig. 6. Position results from human-UAV interaction. This figure shows the resulting trajectory of the Bebop 2 quadrotor
from external force and torque manipulation and the estimated forces and torque that correspond to the trajectories.
The rows indicate the reference positions generated from the admittance controller starting at t = 5 s (blue),
measured Bebop positions from the Optitrack motion capture system (orange) and estimated forces and torque
(yellow). We see that the Bebop state (orange) generally tracks the admittance control reference (blue), as desired.
Note that the y-axis contains both the position unit (meters) and forces/torque units (N, N/m) thus scaling the
estimated quantities (forces and torque).

axis force sensors for filter validation. To compare the
force estimated by the SR-UKF on the Ix and Iy axes,
we used a spring with known spring constant k = 7 N m.
We displace the spring by 20 mm and 30 mm on the Ix and

Iy axes, respectively. After tuning, the Normalized Root
Mean-Squared Error (NRMSE) between the actual and
estimated force is 9.7 % on the Ix-axis and 1.6 % on the

Iy-axis. To compare the estimation obtained by the SR-
UKF on the Iz-axis we used as a known force a mass of
0.1 kg attached near the CoG of the Bebop 2 via a nylon
string. After a tuning process, the NRMSE between the
actual and estimated force is around 30%. The evolution
of the estimated force is reported in Fig. 5.

4.2 Tracking Human Input

Description In this experiment, a human applies a force
and torque to the Bebop 2 by pulling on the nylon string
attached to the body far enough from the CoG to exert
desired forces and torque on the Bz-axis. After some
tests, we found that the following values of virtual inertia
and damping provide adequate behavior of the quadrotor
while following the human input: (Mx,My,Mz, Jψ) =
(0.5, 0.5, 5, 7) and (Cx, Cy, Cz, Cψ) = (0.2, 0.2, 0.2, 0.5).

Force estimation noise If no force is exerted by the
human operator the admittance controller does not gen-
erate new references and the multirotor remains in the
same position. However, the simplifying assumptions of

the model presented in Section 2 and noise result in non-
zero estimated forces and torques. To overcome this issue,
the estimated values are sent to the admittance controller
only if they exceed their relative threshold values (in this

experiment only ‖I f̂
ext
‖ ≥ 0.3 N and |τ̂ ext| ≥ 0.1 N m are

considered) and otherwise a zero value is sent.

Results In Fig. 6 we show the reference trajectory
generated by the admittance controller and the actual
trajectory of the quadrotor. The developed admittance
control scheme generates trajectories and the Bebop 2
follows these trajectories within a reasonable error for
forces and torques above the designated thresholds. We
provide the RMSE values for each axis in Table 1. Also,
note that the behavior of the desired reference trajecto-
ries of the quadrotor can be modified by adjusting the
virtual mass and dampening in the admittance controller.

Table 1: Root Mean Square Error (RMSE) values

Trajectory RMSE Values

RMSEx 0.0829
RMSEy 0.1041
RMSEz 0.0159
RMSEψ 0.27

5. CONCLUSIONS

This paper presents a novel approach for human-UAV
physical interaction based on the differential flatness prop-



erty of the multirotor dynamics and the mechanical ad-
mittance control. This strategy, for the first time, allows
users to physically manipulate commercially available mul-
tirotors without special sensors on-board the multirotor
or specific aerodynamic parameters that require expen-
sive dedicated equipment to be determined. Moreover,
we leverage the full non-linear model of a multirotor to
generate control inputs from the flat outputs, thus avoid-
ing model linearization. We experimentally validated our
results on a testbed with a motion capture system on the
Parrot Bebop 2 quadrotor UAV.
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